The monotone minimal perfect hash function (MMPHF) problem is the following indexing problem. Given a set $S= \{s_1,\ldots,s_n\}$ of $n$ distinct keys from a universe $U$ of size $u$, create a data structure $DS$ that answers the following query: \[ RankOp(q) = \text{rank of } q \text{ in } S \text{ for all } q\in S ~\text{ and arbitrary answer otherwise.} \] Solutions to the MMPHF problem are in widespread use in both theory and practice. The best upper bound known for the problem encodes $DS$ in $O(n\log\log\log u)$ bits and performs queries in $O(\log u)$ time. It has been an open problem to either improve the space upper bound or to show that this somewhat odd looking bound is tight. In this paper, we show the latter: specifically that any data structure (deterministic or randomized) for monotone minimal perfect hashing of any collection of $n$ elements from a universe of size $u$ requires $\Omega(n \cdot \log\log\log{u})$ expected bits to answer every query correctly. We achieve our lower bound by defining a graph $\mathbf{G}$ where the nodes are the possible ${u \choose n}$ inputs and where two nodes are adjacent if they cannot share the same $DS$. The size of $DS$ is then lower bounded by the log of the chromatic number of $\mathbf{G}$. Finally, we show that the fractional chromatic number (and hence the chromatic number) of $\mathbf{G}$ is lower bounded by $2^{\Omega(n \log\log\log u)}$.
翻译:单调的最小完美 hash 函数 (MMPHF) 问题是以下的索引问题 {crt{cl{cl{xx} 在所有的 CHF 中 q\ text{x} s\ text} q\ explus{ explain{}} 和任意解答 {}}} 。考虑到一套美元S= @s_1,\ldots,s_n}美元美元来自宇宙,美元大小为$U$的美元不同密钥,创建一个数据结构 $DS$(美元=美元=美元=美元), 解答以下查询 : 改善空间上限或显示这种奇异的外观是紧凑的 。 在本文中, 任何数据结构( 美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=Ohldregreal, 我们的单数为美元=美元=美元