We explore time-varying networks for high-dimensional locally stationary time series, using the large VAR model framework with both the transition and (error) precision matrices evolving smoothly over time. Two types of time-varying graphs are investigated: one containing directed edges of Granger causality linkages, and the other containing undirected edges of partial correlation linkages. Under the sparse structural assumption, we propose a penalised local linear method with time-varying weighted group LASSO to jointly estimate the transition matrices and identify their significant entries, and a time-varying CLIME method to estimate the precision matrices. The estimated transition and precision matrices are then used to determine the time-varying network structures. Under some mild conditions, we derive the theoretical properties of the proposed estimates including the consistency and oracle properties. In addition, we extend the methodology and theory to cover highly-correlated large-scale time series, for which the sparsity assumption becomes invalid and we allow for common factors before estimating the factor-adjusted time-varying networks. We provide extensive simulation studies and an empirical application to a large U.S. macroeconomic dataset to illustrate the finite-sample performance of our methods.
翻译:我们探索高分辨率当地固定时间序列的时间变化网络,使用大型VAR模型框架,同时进行过渡和(error)精确矩阵的平稳演变。调查了两种不同的时间变化图:一种是大因果联系的定向边缘,另一种是部分相关联系的未定向边缘。在稀疏的结构假设下,我们提出一种带有时间变化加权组LASO的处罚性当地线性方法,以联合估计过渡矩阵并确定其重要条目,另一种是时间变化的CLIME方法,以估计精确矩阵。然后,使用估计的过渡和精确矩阵来确定时间变化的网络结构。在一些温和条件下,我们得出拟议估计数的理论属性,包括一致性和质性能。此外,我们扩大方法和理论的范围,以涵盖与高度气候相关的大尺度时间序列,因此,空间假设是无效的,我们允许共同因素,然后估计因系数变化而变化的网络。我们向一个大的美国提供广泛的模拟研究和实验应用。S.宏观经济数据集,以说明定数方法的性能性能。