Inferring the posterior distribution in SLAM is critical for evaluating the uncertainty in localization and mapping, as well as supporting subsequent planning tasks aiming to reduce uncertainty for safe navigation. However, real-time full posterior inference techniques, such as Gaussian approximation and particle filters, either lack expressiveness for representing non-Gaussian posteriors or suffer from performance degeneracy when estimating high-dimensional posteriors. Inspired by the complementary strengths of Gaussian approximation and particle filters$\unicode{x2013}$scalability and non-Gaussian estimation, respectively$\unicode{x2013}$we blend these two approaches to infer marginal posteriors in SLAM. Specifically, Gaussian approximation provides robot pose distributions on which particle filters are conditioned to sample landmark marginals. In return, the maximum a posteriori point among these samples can be used to reset linearization points in the nonlinear optimization solver of the Gaussian approximation, facilitating the pursuit of global optima. We demonstrate the scalability, generalizability, and accuracy of our algorithm for real-time full posterior inference on realworld range-only SLAM and object-based bearing-only SLAM datasets.
翻译:在SLAM中推断后验分布对于评估定位和建图中的不确定性以及支持随后的规划任务以减少不确定性至关重要。然而,实时全后验推断技术(例如高斯近似和粒子滤波器),要么缺乏表示非高斯后验的表达能力,要么在估计高维后验时受到性能退化。受高斯近似和粒子滤波器的互补优势(可扩展性和非高斯估计)启发,我们将这两种方法结合起来推断SLAM中的边缘后验。具体来说,高斯近似提供机器人姿态分布,粒子滤波器以此为条件来采样地标边缘。反过来,这些样本中的最大后验概率点可用于在高斯近似的非线性优化求解器中重置线性化点,从而有助于追求全局最优解。我们证明了我们的算法在实时全后验推断中的可扩展性、普适性和准确性,证明了我们的算法适用于实际的基于距离的和基于物体方向的SLAM数据集。