sparseDFM is an R package for the implementation of popular estimation methods for dynamic factor models (DFMs) including the novel Sparse DFM approach of Mosley et al. (2023). The Sparse DFM ameliorates interpretability issues of factor structure in classic DFMs by constraining the loading matrices to have few non-zero entries (i.e. are sparse). Mosley et al. (2023) construct an efficient expectation maximisation (EM) algorithm to enable estimation of model parameters using a regularised quasi-maximum likelihood. We provide detail on the estimation strategy in this paper and show how we implement this in a computationally efficient way. We then provide two real-data case studies to act as tutorials on how one may use the sparseDFM package. The first case study focuses on summarising the structure of a small subset of quarterly CPI (consumer price inflation) index data for the UK, while the second applies the package onto a large-scale set of monthly time series for the purpose of nowcasting nine of the main trade commodities the UK exports worldwide.
翻译:Translated Abstract:
sparseDFM是一个R包,用于实现动态因子模型(DFM)的流行估计方法,包括Mosley等人(2023)的新颖稀疏DFM方法。 稀疏DFM通过将载荷矩阵限制为只有少数非零条目(即稀疏)来改善经典DFM中因子结构的可解释性问题。 Mosley等人(2023)构建了一种高效的期望最大化(EM)算法,以使用正则化的拟极大似然估计模型参数。本文提供了有关估计策略的详细信息,并展示了如何以计算效率方式实现此算法。然后,我们提供了两个实际数据案例,作为如何使用sparseDFM包的教程。第一个案例研究聚焦于总结英国一个小型季度CPI(消费价格通胀)指数数据的结构,第二个案例则将包应用于大规模的月度时间序列数据集,以预测英国出口到全球九个主要贸易商品的现状。