For the multivariate linear regression model with unknown covariance, the corrected Akaike information criterion is the minimum variance unbiased estimator of the expected Kullback--Leibler discrepancy. In this study, based on the loss estimation framework, we show its inadmissibility as an estimator of the Kullback--Leibler discrepancy itself, instead of the expected Kullback--Leibler discrepancy. We provide improved estimators of the Kullback--Leibler discrepancy that work well in reduced-rank situations and examine their performance numerically.
翻译:对于未知协方差的多元线性回归模型,矫正的阿卡依凯准则是期望库尔巴克-莱布勒散度的最小方差无偏估计量。本研究基于损失评估框架,展示了其在作为库尔巴克-莱布勒散度本身的估计量时的不可接受性,而非期望库尔巴克-莱布勒散度的估计量。我们提供了在低秩情况下表现良好的库尔巴克-莱布勒散度的改进估计量,并对其性能进行了数字化检验。