Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand challenges brought by the scaling-up MOPs with continuously increasing complexity from diverse aspects, mainly including expensive cost of function evaluations, many objectives, large-scale search space, time-varying environments, and multi-task. Under different scenarios, divergent thinking is required in designing new powerful MOEAs for solving them effectively. In this context, research studies on learnable MOEAs with machine learning techniques have received extensive attention in the field of evolutionary computation. This paper begins with a general taxonomy of scaling-up MOPs and learnable MOEAs, followed by an analysis of the challenges that these MOPs pose to traditional MOEAs. Then, we synthetically overview recent advances of learnable MOEAs in solving various scaling-up MOPs, focusing primarily on four attractive directions (i.e., learnable evolutionary discriminators for environmental selection, learnable evolutionary generators for reproduction, learnable evolutionary evaluators for function evaluations, and learnable evolutionary transfer modules for sharing or reusing optimization experience). The insight of learnable MOEAs is offered to readers as a reference to the general track of the efforts in this field.


翻译:近几十年来,在多目标优化问题的多目标进化算法(MOEAs)方面取得了巨大进步,然而,这些逐步改进的MOEA不一定具备可推广和可学习的解决问题战略,以应对规模扩大的MOEA从不同方面不断增加的复杂性带来的新挑战和巨大挑战,主要包括功能评估费用昂贵、许多目标、大规模搜索空间、时间变化环境和多任务。在不同情况下,设计新的强大模型以有效解决这些问题需要不同的思维,在这方面,关于采用机器学习技术的可学习的MOEA的研究在进化计算领域得到了广泛的关注。本文件首先对扩大MOEAs和可学习的MOEAs进行总体分类,随后对这些模型对传统MOEAs构成的挑战进行了分析。然后,我们合成了可学习的MOEAs在解决各种规模扩大的MOEAs方面的最新进展,主要侧重于四个有吸引力的方向(即环境选择的可学习的进化分析器、可学习的进化生成器和可学习的MEAs ), 向可学习的变进化模型和可演化模型传授的变化模型,为学习的变进模型提供学习的进化模型。</s>

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
34+阅读 · 2022年2月15日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员