Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand challenges brought by the scaling-up MOPs with continuously increasing complexity from diverse aspects, mainly including expensive cost of function evaluations, many objectives, large-scale search space, time-varying environments, and multi-task. Under different scenarios, divergent thinking is required in designing new powerful MOEAs for solving them effectively. In this context, research studies on learnable MOEAs with machine learning techniques have received extensive attention in the field of evolutionary computation. This paper begins with a general taxonomy of scaling-up MOPs and learnable MOEAs, followed by an analysis of the challenges that these MOPs pose to traditional MOEAs. Then, we synthetically overview recent advances of learnable MOEAs in solving various scaling-up MOPs, focusing primarily on four attractive directions (i.e., learnable evolutionary discriminators for environmental selection, learnable evolutionary generators for reproduction, learnable evolutionary evaluators for function evaluations, and learnable evolutionary transfer modules for sharing or reusing optimization experience). The insight of learnable MOEAs is offered to readers as a reference to the general track of the efforts in this field.
翻译:近几十年来,在多目标优化问题的多目标进化算法(MOEAs)方面取得了巨大进步,然而,这些逐步改进的MOEA不一定具备可推广和可学习的解决问题战略,以应对规模扩大的MOEA从不同方面不断增加的复杂性带来的新挑战和巨大挑战,主要包括功能评估费用昂贵、许多目标、大规模搜索空间、时间变化环境和多任务。在不同情况下,设计新的强大模型以有效解决这些问题需要不同的思维,在这方面,关于采用机器学习技术的可学习的MOEA的研究在进化计算领域得到了广泛的关注。本文件首先对扩大MOEAs和可学习的MOEAs进行总体分类,随后对这些模型对传统MOEAs构成的挑战进行了分析。然后,我们合成了可学习的MOEAs在解决各种规模扩大的MOEAs方面的最新进展,主要侧重于四个有吸引力的方向(即环境选择的可学习的进化分析器、可学习的进化生成器和可学习的MEAs ), 向可学习的变进化模型和可演化模型传授的变化模型,为学习的变进模型提供学习的进化模型。</s>