Z-complementary code sets (ZCCSs) are used in multicarrier code-division multiple access (MC-CDMA) systems, for interference-free communication over multiuser and quasi-asynchronous environments. In this letter, we propose three new constructions of optimal binary $\left(R2^{k+1},2^{k+1}, R\gamma,\gamma\right)$-ZCCS, $\left(R2^{k+1},2^{k+1}, R2^{m_{2}},2^{m_{2}}\right)$-ZCCS and $\left(2^{k+1},2^{k+1},3\gamma,2\gamma\right)$-ZCCS based on generalized Boolean functions (GBFs), where $\gamma=2^{m_{1}-1}+2^{m_{1}-3}, m_{1}\geq 5, k\geq 1,m_{2}\geq 1$ and $R$ is any even number. The proposed ZCCSs cover many unreported lengths and large set sizes.
翻译:Z- 补充代码集( ZCCS) 用于多载代码多存系统( MC- CDMA), 用于多用户和半非同步环境的无干扰通信。 在本信中, 我们提议基于通用布林功能( GBF), $\\\\ k+1}, R\\\\\\ k+1},\\\\\\\\\\\ k+1} \\\\\\\\\\\\ k+1}, $\\ \ \\\ k+1}, R2\ \ \ \\\\ \ 2\ \ \ \ \ \ \ \ \\\ \ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3} 3}, R$ ZCCCS-, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \