The rate of heart morbidity and heart mortality increases significantly which affect the global public health and world economy. Early prediction of heart disease is crucial for reducing heart morbidity and mortality. This paper proposes two quantum machine learning methods i.e. hybrid quantum neural network and hybrid random forest quantum neural network for early detection of heart disease. The methods are applied on the Cleveland and Statlog datasets. The results show that hybrid quantum neural network and hybrid random forest quantum neural network are suitable for high dimensional and low dimensional problems respectively. The hybrid quantum neural network is sensitive to outlier data while hybrid random forest is robust on outlier data. A comparison between different machine learning methods shows that the proposed quantum methods are more appropriate for early heart disease prediction where 96.43% and 97.78% area under curve are obtained for Cleveland and Statlog dataset respectively.
翻译:心脏病发病率和心脏病死亡率大幅上升,影响全球公共卫生和世界经济。早期预测心脏病对于降低心脏病发病率和死亡率至关重要。本文件提出了两种量子机器学习方法,即混合量子神经网络和混合随机森林量子神经网络,以早期发现心脏病。这种方法适用于克利夫兰和Statlog数据集。结果显示混合量子神经网络和混合随机森林量子神经网络分别适合高维和低维问题。混合量子神经网络对外部数据敏感,而混合随机森林对外部数据非常可靠。不同机体学习方法的比较表明,拟议的量子方法更适合早期心脏病预测,其中克里夫兰和Statlog数据集分别获得96.43%和97.78%的曲线区域。