Deep RL approaches build much of their success on the ability of the deep neural network to generate useful internal representations. Nevertheless, they suffer from a high sample-complexity and starting with a good input representation can have a significant impact on the performance. In this paper, we exploit the fact that the underlying Markov decision process (MDP) represents a graph, which enables us to incorporate the topological information for effective state representation learning. Motivated by the recent success of node representations for several graph analytical tasks we specifically investigate the capability of node representation learning methods to effectively encode the topology of the underlying MDP in Deep RL. To this end we perform a comparative analysis of several models chosen from 4 different classes of representation learning algorithms for policy learning in grid-world navigation tasks, which are representative of a large class of RL problems. We find that all embedding methods outperform the commonly used matrix representation of grid-world environments in all of the studied cases. Moreoever, graph convolution based methods are outperformed by simpler random walk based methods and graph linear autoencoders.


翻译:深 RL 方法在深度神经网络生成有用的内部陈述的能力上取得了许多成功,但是,它们具有高度的样本复杂性,从良好的投入代表开始,可以对业绩产生重大影响。在本文中,我们利用以下事实:基底的Markov 决策程序(MDP)代表一个图表,使我们能够将地形信息纳入有效的国家代表性学习。我们特别调查了节点代表学习方法的能力,以有效地将深RL 中MDP的原始地形编码。为此,我们比较分析从四个不同类别的代表学习方法中选定的若干模型,用于在网络世界导航任务中进行政策学习,这些模型代表了一大类RL问题。我们发现,所有嵌入的方法都超越了所有研究案例中通用的网格世界环境矩阵代表。更多的是,基于图形变异的方法以更简单的随机行走法和图式直线式自动解算法为外形。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员