This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice -- a setting that, as pointed out by Zeng, Leung, Hickernell (MCQMC2004, 2006) and Zeng, Kritzer, Hickernell (Constr. Approx., 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja, Kuo, Sloan (SIAM J. Numer. Anal., 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.
翻译:本文涉及以内核为基础的多变量周期性函数近似值,在集成式方块点进行内插,这是Zeng、Leung、Hickernell(MCQMC2004,2006年)和Zeng、Kritzer、Hicknell(Castr.Approx,2009年)指出的一个环境,使快速Fourier变形能够快速评估,从而避免了线性求解器的需要。本文的主要贡献是应用近似问题,对椭圆部分差异方程式进行不确定性的量化,随机字段在随机变量中给出的传播系数,在库、斯隆(SIAM J.Numer.Anal.,2020年)提出的模型中,该文件提供了全面的错误分析,并提供了为确保良好(但不可避免的不是最佳)趋同率和不受维度限制的错误而需要构建的层层层结构的全部细节。数字实验支持这一理论。