Many representative graph neural networks, $e.g.$, GPR-GNN and ChebyNet, approximate graph convolutions with graph spectral filters. However, existing work either applies predefined filter weights or learns them without necessary constraints, which may lead to oversimplified or ill-posed filters. To overcome these issues, we propose $\textit{BernNet}$, a novel graph neural network with theoretical support that provides a simple but effective scheme for designing and learning arbitrary graph spectral filters. In particular, for any filter over the normalized Laplacian spectrum of a graph, our BernNet estimates it by an order-$K$ Bernstein polynomial approximation and designs its spectral property by setting the coefficients of the Bernstein basis. Moreover, we can learn the coefficients (and the corresponding filter weights) based on observed graphs and their associated signals and thus achieve the BernNet specialized for the data. Our experiments demonstrate that BernNet can learn arbitrary spectral filters, including complicated band-rejection and comb filters, and it achieves superior performance in real-world graph modeling tasks.


翻译:许多具有代表性的图形神经网络,例如$,GPR-GNN和ChebyNet, 与图形光谱过滤器相近的图形图变形,然而,现有的工作要么采用预先定义的过滤器重量,要么在没有必要限制的情况下学习这些重量,这可能导致过度简化或错误的过滤器。为了克服这些问题,我们建议使用$\textit{BernNet}美元,这是一个具有理论支持的新型图形神经网络,为设计和学习任意的图形光谱过滤器提供一个简单而有效的计划。特别是,对于一个图的正常拉普拉西频谱的任何过滤器,我们的伯尔尼Net用一个定值-K$Bernstein多边近似法进行估算,并通过设定伯恩斯坦基的系数来设计其光谱属性。此外,我们可以根据观察到的图表及其相关信号来学习系数(和相应的过滤器重量),从而实现伯尔尼网络的数据专用。我们的实验表明,伯恩Net可以学习任意的光谱过滤器,包括复杂的带反射器和梳子过滤器,并且通过设定真实世界的图形模型任务达到更高的性。

3
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
92+阅读 · 2021年6月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年8月20日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
0+阅读 · 2021年8月20日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
6+阅读 · 2019年11月14日
Top
微信扫码咨询专知VIP会员