For cyber-physical systems, finding a set of test cases with the least cost by exploring multiple goals is a complex task. For example, Arrieta et al. reported that state-of-the-art optimizers struggle to find minimal test suites for this task. To better manage this task, we propose DoLesS (Domination with Least Squares Approximation) which uses a domination predicate to sort the space of possible goals to a small number of representative examples. Multi-objective domination then divides these examples into a "best" set and the remaining "rest" set. After that, DoLesS applies an inverted least squares approximation approach to learn a minimal set of tests that can distinguish best from rest in the reduced example space. DoLesS has been tested on four cyber-physical models: a tank flow model; a model of electric car windows; a safety feature of an AC engine; and a continuous PID controller combined with a discrete state machine. Comparing to the recent state-of-the-art paper attempted the same task, DoLesS performs as well or even better as state-of-the-art, while running 80-360 times faster on average (seconds instead of hours). Hence, we recommend DoLesSas a fast method to find minimal test suites for multi-goal cyber-physical systems. For replication purposes, all our code is on-line:https://github.com/hellonull123/Test_Selection_2021.
翻译:对于网络物理系统,通过探索多重目标找到一组成本最低的测试案例是一项复杂的任务。 例如, Arrieta 等人( Arrieta et al.) 报告说, 最先进的优化优化者在为此项任务寻找最起码的测试套件。 为了更好地管理这项任务, 我们提议 DOLesS( 与最小的广场相匹配 ), 使用一种支配性前提将可能的目标空间排序为少数具有代表性的例子 。 多目标控制然后将这些示例分割为“ 最佳” 和其余的“ 回收” 套件 。 之后, DoLesS 应用了一种反向最小的最小平方近似方法来学习一套最起码的测试。 DoLesS 已经在四个网络物理模型上进行了测试: 坦克流模型; 电动车窗模型; AC引擎的安全特性; 以及连续的 PID 控制器与离散状态机器 。 比较最近的State- 123 和其余的“ restst” 设置。 在此之后, DoLesS 将尝试同样的任务, DoLS 将运行良好甚至更好或更佳的平局- beal- develop- combalbalbalbalbalbreal- hest- hestal- hest- hestal- case- case- case- hest- salbalbal- sal- searbal- solververveal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sable- sable- leg- sal- sal- legy- forg- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- salds.