Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain state-of-the-art results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.
翻译:在本文中, 我们使用细胞纤维理论来显示图形的基本几何与GNN在异性医学环境中的性能及其超momother行为密切相连。 图形神经网络( GNNNS) 暗含地假设一个带有一个小小的外壳的图形。 这个选择反映在 Laplacian 操作器的结构中, 相关的扩散方程的属性, 以及分离这个方程的进化模型的特性。 在本文中, 我们使用细胞纤维纤维模型理论来显示图形的基本几何与GNNS在异性医学环境中的性能及其过度移动行为密切相连。 通过考虑一个越来越普通的外壳结构的等级, 我们研究Selaf 扩散过程在无限时间范围内实现各类线性分离的能力。 与此同时, 我们证明当其非三角, 离异的对异性扩散过程比 GNNNFs 更能控制它们的无症状行为。 在实际的一面, 我们研究如何从数据中学习 sheaves 从一般的外观中学习。 因此, GNF 扩散模型和 G- millal- g- millalal comgraphal comal commat 等模型的内, 我们的顶部和 G- g- g- g- g- g- g- creal- clas- greal- cal- cal- cal- cal- gal- gal- cal- glas- cal- gal- gal- gal- cal- glas- sal- sal- glas- gma) 的外建的外建的外建的外的模型有许多许多的特性。