This paper considers the problem of multi-server Private Linear Computation, under the joint and individual privacy guarantees. In this problem, identical copies of a dataset comprised of $K$ messages are stored on $N$ non-colluding servers, and a user wishes to obtain one linear combination of a $D$-subset of messages belonging to the dataset. The goal is to design a scheme for performing the computation such that the total amount of information downloaded from the servers is minimized, while the privacy of the $D$ messages required for the computation is protected. When joint privacy is required, the identities of all of these $D$ messages must be kept private jointly, and when individual privacy is required, the identity of every one of these $D$ messages must be kept private individually. In this work, we characterize the capacity, which is defined as the maximum achievable download rate, under both joint and individual privacy requirements. In particular, we show that the capacity is given respectively by ${(1+1/N+\dots+1/N^{K-D})^{-1}}$ or ${(1+1/N+\dots+1/N^{\lceil K/D\rceil-1})^{-1}}$ when joint or individual privacy is required. Our converse proofs are based on reduction from two variants of the multi-server Private Information Retrieval problem in the presence of side information. Our achievability schemes build up on our recently proposed schemes for single-server Private Linear Transformation and the multi-server private computation scheme proposed by Sun and Jafar. Using similar proof techniques, we also establish upper and lower bounds on the capacity for the cases in which the user wants to compute $L$ (potentially more than one) linear combinations. Specifically, we show that the capacity is upper and lower bounded respectively by ${(1+1/N+\dots+1/N^{(K-D)/L})^{-1}}$ and ${(1+1/N+\dots+1/N^{K-D+L-1})^{-1}}$, when joint privacy is required.


翻译:本文在联合和个人隐私保障下考虑多服务器私自线性比较问题 。 在此问题上, 由 $K$ 组成的数据集的相同副本将存储在$N$的非coluding 服务器上, 用户希望获得属于该数据集的$D- subset 的信件的线性组合。 目标是设计一个计算方法, 使从服务器下载的信息总量最小化, 而计算所需的$D$的隐私将受到保护 。 当需要联合隐私时, 所有这些$美元的信件都必须被联合保存, 当需要个人隐私时, 每一个由$K$美元组成的数据集的相同副本, 其中每个$D$美元的信件都必须单独保存。 在这项工作中, 我们将能力定义为在联合隐私要求下的最大可下载率 。 特别是, 我们显示能力分别由$( 1+ NQQQQQQQQQQQQQQQQQ_QQQ_QQ_Q_Q_Q_Q_ companyal serality supilations the suideal suide rudeal_1NQ_NQ_NQIL_ lQIL_l) IMUIL_ IMUIL_ IMUIL_ IM IMUIL_ IMUIL_ IML_ IML_ IMUI MI MI MI MI MI MI MI IMUL_ IMUT MI MI MI MI MI IMOL IM IM IM IM MI MI MI MI 和 MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI IM MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI $ 1) 和 MI MI MI MI MI MI $ 1) MI

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Arxiv
0+阅读 · 2021年10月14日
Privacy-Preserving News Recommendation Model Learning
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Top
微信扫码咨询专知VIP会员