The comparison of multivariate population means is a central task of statistical inference. While statistical theory provides a variety of analysis tools, they usually do not protect individuals' privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling's $t^2$-statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study we demonstrate the applicability of this approach.


翻译:多变人口手段的比较是统计推理的中心任务。虽然统计理论提供了各种分析工具,但它们通常不会保护个人的隐私。这种知识可以激励研究参与者隐瞒真实数据(特别是外星数据),从而导致扭曲分析。在本文中,我们通过对多变平均比较进行假设测试来解决这个问题,从而保证用户的隐私差异。测试统计数据以流行的宾馆的$t ⁇ 2$-统计学为基础,该统计学对马哈拉诺比斯距离有自然解释。为了控制1-eror,我们在差异隐私权下提出了一种可以产生可靠测试决定的靴式算法。在一项实验研究中,我们展示了这一方法的适用性。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
专知会员服务
22+阅读 · 2021年10月6日
专知会员服务
50+阅读 · 2020年12月14日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年6月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月5日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
专知会员服务
22+阅读 · 2021年10月6日
专知会员服务
50+阅读 · 2020年12月14日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
8+阅读 · 2019年6月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员