Graph neural network (GNN) is widely used for recommendation to model high-order interactions between users and items. Existing GNN-based recommendation methods rely on centralized storage of user-item graphs and centralized model learning. However, user data is privacy-sensitive, and the centralized storage of user-item graphs may arouse privacy concerns and risk. In this paper, we propose a federated framework for privacy-preserving GNN-based recommendation, which can collectively train GNN models from decentralized user data and meanwhile exploit high-order user-item interaction information with privacy well protected. In our method, we locally train GNN model in each user client based on the user-item graph inferred from the local user-item interaction data. Each client uploads the local gradients of GNN to a server for aggregation, which are further sent to user clients for updating local GNN models. Since local gradients may contain private information, we apply local differential privacy techniques to the local gradients to protect user privacy. In addition, in order to protect the items that users have interactions with, we propose to incorporate randomly sampled items as pseudo interacted items for anonymity. To incorporate high-order user-item interactions, we propose a user-item graph expansion method that can find neighboring users with co-interacted items and exchange their embeddings for expanding the local user-item graphs in a privacy-preserving way. Extensive experiments on six benchmark datasets validate that our approach can achieve competitive results with existing centralized GNN-based recommendation methods and meanwhile effectively protect user privacy.


翻译:以 GNN 为基础的图像神经网络( GNN) 被广泛用于建议用户和项目之间高端互动模式。 现有的 GNN 推荐方法依赖于用户项目图的集中存储和集中模式学习。 然而, 用户数据对隐私敏感, 用户项目图的集中存储可能会引起隐私关切和风险。 在本文中, 我们提出一个隐私保护GNN 建议的联邦框架, 它可以从分散用户数据中集体培训GNN 模型, 同时利用高端用户项目互动信息, 并保护隐私。 在我们的方法中, 我们根据从用户项目互动数据中推断的用户项目中, 本地培训GNNN 模型。 每个客户将GNN 的本地梯度上传到服务器进行汇总, 然后再发送给用户客户客户用户更新 GNNN 模型。 由于本地梯度可能包含私人信息, 我们将本地差异隐私技术应用于本地梯度保护用户隐私。 此外, 为了保护用户与用户互动的项目, 我们提议将随机抽样项目作为假的虚拟互动项目, 以匿名方式将本地用户核心用户数据库 格式交换用户项目 。 将高端用户项目 与高端用户 界面 界面 界面互动 。

5
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
61+阅读 · 2020年1月10日
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
20+阅读 · 2019年11月23日
A Graph Auto-Encoder for Attributed Network Embedding
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
61+阅读 · 2020年1月10日
Top
微信扫码咨询专知VIP会员