Visual Question Answering (VQA) has attracted attention from both computer vision and natural language processing communities. Most existing approaches adopt the pipeline of representing an image via pre-trained CNNs, and then using the uninterpretable CNN features in conjunction with the question to predict the answer. Although such end-to-end models might report promising performance, they rarely provide any insight, apart from the answer, into the VQA process. In this work, we propose to break up the end-to-end VQA into two steps: explaining and reasoning, in an attempt towards a more explainable VQA by shedding light on the intermediate results between these two steps. To that end, we first extract attributes and generate descriptions as explanations for an image using pre-trained attribute detectors and image captioning models, respectively. Next, a reasoning module utilizes these explanations in place of the image to infer an answer to the question. The advantages of such a breakdown include: (1) the attributes and captions can reflect what the system extracts from the image, thus can provide some explanations for the predicted answer; (2) these intermediate results can help us identify the inabilities of both the image understanding part and the answer inference part when the predicted answer is wrong. We conduct extensive experiments on a popular VQA dataset and dissect all results according to several measurements of the explanation quality. Our system achieves comparable performance with the state-of-the-art, yet with added benefits of explainability and the inherent ability to further improve with higher quality explanations.


翻译:视觉问题解答(VQA)吸引了计算机视觉和自然语言处理社区的注意。大多数现有方法都采用通过预先培训的CNN来代表图像的管道,然后使用无法解释的CNN功能来预测答案。虽然这种端对端模型可能报告有希望的性能,但除了答案之外,它们很少对VQA进程提供任何洞察力。在这项工作中,我们建议将终端对端VQA分成两步:(1) 属性和字幕可以反映系统从图像中提取的内容,从而对预测的答案作出一些解释;(2) 这些中间结果可以帮助我们通过使用预先培训的属性探测器和图像说明模型分别提取属性和描述作为图像解释的图解。接下来,一个推理模块利用这些解释来代替图像的答案来推断问题的答案。这种解析的优点包括:(1) 属性和字幕可以反映系统从图像中提取的内容,从而对预测的答案作出一些解释;(2) 为此,我们首先提取属性和描述作为图像解释解释解释的解释的说明,然后在预测性结果的准确性部分中,我们用预测性分析的系统得出了各种结果的不稳性结果。

9
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员