We study a distributed hypothesis testing setup where peripheral nodes send quantized data to the fusion center in a memoryless fashion. The \emph{expected} number of bits sent by each node under the null hypothesis is kept limited. We characterize the optimal decay rate of the mis-detection (type-II error) probability provided that false alarms (type-I error) are rare, and study the tradeoff between the communication rate and maximal type-II error decay rate. We resort to rate-distortion methods to provide upper bounds to the tradeoff curve and show that at high rates lattice quantization achieves near-optimal performance. We also characterize the tradeoff for the case where nodes are allowed to record and quantize a fixed number of samples. Moreover, under sum-rate constraints, we show that an upper bound to the tradeoff curve is obtained with a water-filling solution.
翻译:我们研究一个分布式假设测试装置, 边际节点以无记忆的方式向聚变中心发送量化数据。 无效假设下每个节点发送的位数有限。 我们定性误测概率的最佳衰减率( 类型二误差), 只要假警报( 类型一误差) 是罕见的, 并研究通信率和最大类型二误差率之间的权衡。 我们使用率扭曲法来提供取舍曲线的上界, 并显示以高速的 lattice 量化能取得接近最佳的性能 。 我们还将允许节点记录并量化固定数量的样本的折换率定性为例 。 此外, 在超速限制下, 我们显示, 交易曲线的顶端是用填水的解决方案获得的 。