We introduce a new implicit shape representation called Primary Ray-based Implicit Function (PRIF). In contrast to most existing approaches based on the signed distance function (SDF) which handles spatial locations, our representation operates on oriented rays. Specifically, PRIF is formulated to directly produce the surface hit point of a given input ray, without the expensive sphere-tracing operations, hence enabling efficient shape extraction and differentiable rendering. We demonstrate that neural networks trained to encode PRIF achieve successes in various tasks including single shape representation, category-wise shape generation, shape completion from sparse or noisy observations, inverse rendering for camera pose estimation, and neural rendering with color.
翻译:我们引入了一个新的隐含形状代表,称为初级光学隐形函数(PRIF ) 。 与大多数基于经签署的远程功能(SDF ) 处理空间位置的现有方法不同,我们的代表使用定向射线操作。 具体地说,PRIF是直接生成特定输入射线的表面撞击点,没有昂贵的外观操作,从而能够高效地提取形状和进行不同的演化。 我们证明,经过培训的将PRIF编码的神经网络在各种任务中取得了成功,包括单形状代表、分类形状生成、从稀疏或吵闹闹的观测中完成形状、反向拍摄相机显示估计以及有色的神经转换。