The Roamn domination problem is one important combinatorial optimization problem that is derived from an old story of defending the Roman Empire and now regains new significance in cyber space security, considering backups in the face of a dynamic network security requirement. In this paper, firstly, we propose a Roman domination game (RDG) and prove that every Nash equilibrium (NE) of the game corresponds to a strong minimal Roman dominating function (S-RDF), as well as a Pareto-optimal solution. Secondly, we show that RDG is an exact potential game, which guarantees the existence of an NE. Thirdly, we design a game-based synchronous algorithm (GSA), which can be implemented distributively and converge to an NE in $O(n)$ rounds, where $n$ is the number of vertices. In GSA, all players make decisions depending on the local information. Furthermore, we enhance GSA to be enhanced GSA (EGSA), which converges to a better NE in $O(n^2)$ rounds. Finally, we present numerical simulations to demonstrate that EGSA can obtain a better approximate solution in promising computation time compared with state-of-the-art algorithms.
翻译:Roamn 统治问题是一个重要的组合优化问题,它源自一个旧故事,即捍卫罗马帝国,现在又在网络空间安全方面重新获得新的意义,考虑到面对动态网络安全要求的备份。在本文中,首先,我们提议罗马统治游戏(RG),并证明游戏的每一个纳什平衡(NE)都相当于一个极小的罗马主宰功能(S-RDF),以及一个最佳的Pareto解决方案。第二,我们显示RDG是一个精确的潜在游戏,它保证了NE的存在。第三,我们设计了一种基于游戏的同步算法(GSA),它可以分解并集中到一个以美元(n)为圆盘的NEE(N)回合,其中美元是旋转数。在GSA中,所有玩家都根据当地信息来做决定。此外,我们增强GSA(GSA),它将在美元(n)2美元回合中与更好的NEE(NE)汇合起来。最后,我们提出数字模拟,以显示EGSA-A的算法方法可以比出一个更有希望的州算法。