We analyse uniformly random proper $k$-colourings of sparse graphs with maximum degree $\Delta$ in the regime $\Delta < k\ln k $. This regime corresponds to the lower side of the shattering threshold for random graph colouring, a paradigmatic example of the shattering threshold for random Constraint Satisfaction Problems. We prove a variety of results about the solution space geometry of colourings of fixed graphs, generalising work of Achlioptas, Coja-Oghlan, and Molloy on random graphs, and justifying the performance of stochastic local search algorithms in this regime. Our central proof relies only on elementary techniques, namely the first-moment method and a quantitative induction, yet it strengthens list-colouring results due to Vu, and more recently Davies, Kang, P., and Sereni, and generalises state-of-the-art bounds from Ramsey theory in the context of sparse graphs. It further yields an approximately tight lower bound on the number of colourings, also known as the partition function of the Potts model, with implications for efficient approximate counting.


翻译:我们分析最大度数为 $\Delta$ 的稀疏图的均匀随机的 $k$-染色,其中 $\Delta < k\ln k $ 对应于随机图染色的碎片阈值的下限,这是碎片约束满足问题碎片阈值的代表性例子。我们证明了关于固定图的染色解空间几何的各种结果,扩展了 Achlioptas、Coja-Oghlan 和 Molloy 对随机图的工作,并证明了随机局部搜索算法在该区域的性能的有效性。我们的核心证明仅依赖于基本技术,即第一时刻法和量化归纳,但它加强了 Vu 的列表染色结果,以及近期由 Davies、Kang、P. 和 Sereni 的Generalizes 式强辞表限制。它进一步给出了关于染色数量的约束,也称作波茨模型的划分函数的近似紧密下界,对于有效的近似计数具有意义。

0
下载
关闭预览

相关内容

【WWW2022】互信息压缩的紧凑图结构学习
专知会员服务
33+阅读 · 2022年1月17日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
51+阅读 · 2020年12月14日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
13+阅读 · 2019年12月27日
概率论和机器学习中的不等式
PaperWeekly
2+阅读 · 2022年11月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
概率论和机器学习中的不等式
PaperWeekly
2+阅读 · 2022年11月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员