We analyse uniformly random proper $k$-colourings of sparse graphs with maximum degree $\Delta$ in the regime $\Delta < k\ln k $. This regime corresponds to the lower side of the shattering threshold for random graph colouring, a paradigmatic example of the shattering threshold for random Constraint Satisfaction Problems. We prove a variety of results about the solution space geometry of colourings of fixed graphs, generalising work of Achlioptas, Coja-Oghlan, and Molloy on random graphs, and justifying the performance of stochastic local search algorithms in this regime. Our central proof relies only on elementary techniques, namely the first-moment method and a quantitative induction, yet it strengthens list-colouring results due to Vu, and more recently Davies, Kang, P., and Sereni, and generalises state-of-the-art bounds from Ramsey theory in the context of sparse graphs. It further yields an approximately tight lower bound on the number of colourings, also known as the partition function of the Potts model, with implications for efficient approximate counting.
翻译:我们分析最大度数为 $\Delta$ 的稀疏图的均匀随机的 $k$-染色,其中 $\Delta < k\ln k $ 对应于随机图染色的碎片阈值的下限,这是碎片约束满足问题碎片阈值的代表性例子。我们证明了关于固定图的染色解空间几何的各种结果,扩展了 Achlioptas、Coja-Oghlan 和 Molloy 对随机图的工作,并证明了随机局部搜索算法在该区域的性能的有效性。我们的核心证明仅依赖于基本技术,即第一时刻法和量化归纳,但它加强了 Vu 的列表染色结果,以及近期由 Davies、Kang、P. 和 Sereni 的Generalizes 式强辞表限制。它进一步给出了关于染色数量的约束,也称作波茨模型的划分函数的近似紧密下界,对于有效的近似计数具有意义。