This research article discusses a numerical solution of the radiative transfer equation based on the weak Galerkin finite element method. We discretize the angular variable by means of the discrete-ordinate method. Then the resulting semi-discrete hyperbolic system is approximated using the weak Galerkin method. The stability result for the proposed numerical method is devised. A \emph{priori} error analysis is established under the suitable norm. In order to examine the theoretical results, numerical experiments are carried out.
翻译:本研究文章讨论辐射转移方程式的数值解决方案, 其依据是微弱的Galerkin 有限元素法。 我们通过离散坐标法将角变量分离。 然后, 产生的半分解双曲系统使用弱的Galerkin 法进行近似。 设计了拟议数字方法的稳定性结果。 在合适的规范下, 确定了一个 \ emph{ riori} 错误分析。 为了检查理论结果, 进行了数字实验 。