In the context of uncertainty quantification, computational models are required to be repeatedly evaluated. This task is intractable for costly numerical models. Such a problem turns out to be even more severe for stochastic simulators, the output of which is a random variable for a given set of input parameters. To alleviate the computational burden, we develop a new stochastic surrogate model called stochastic polynomial chaos expansions. To this aim, we introduce a latent variable and an additional noise variable, on top of the well-defined input variables, to represent the intrinsic stochasticity. As a result, for a given set of input parameters, the model output is given by a function of the latent variable with an additive noise, thus a random variable. We develop an adaptive algorithm to construct such a surrogate, which does not require repeated runs of the simulator for the same input parameters. The performance of the proposed method is compared with the generalized lambda model and a state-of-the-art kernel estimator on two case studies in mathematical finance and epidemiology and on an analytical example whose response distribution is bimodal. The results show that the proposed method is able to accurately represent general response distributions, i.e., not only normal or unimodal ones. In terms of accuracy, it generally outperforms both the generalized lambda model and the kernel density estimator.
翻译:在不确定性量化的背景下, 计算模型需要反复评估 。 此任务对于昂贵的数值模型来说是难以解决的 。 这样的问题对于随机模拟器来说甚至更为严重, 其输出是给定一组输入参数的随机变量。 为了减轻计算负担, 我们开发了一个新的随机替代模型, 叫做随机多盘混杂的扩展。 为此, 我们引入了一个潜伏变量和一个额外的噪音变量, 在定义明确的输入变量之上, 以代表内在的随机性。 因此, 对于一套特定的输入参数来说, 模型输出由带有添加噪音的潜伏变量的函数来给出, 因而是一个随机变量。 我们开发了一种适应性算法来构建这样一个替代模型, 它不需要重复使用模拟器来计算相同的输入参数。 为了这个目的, 我们所建议的方法的性能与通用的羊巴模型和一个最高级的羊皮内内内子值状态的估测器相比, 来代表数学融资和流行病学的两个案例研究, 以及一个分析性示例, 其反应通常不是双式的。 的结果显示一种方法, 显示一般的分布方式。 。