The list-decodable code has been an active topic in theoretical computer science.There are general results about the list-decodability to the Johnson radius and the list-decoding capacity theorem. In this paper we show that rates, list-decodable radius and list sizes are closely related to the classical topic of covering codes. We prove new general simple but strong upper bounds for list-decodable codes in general finite metric spaces based on various covering codes. The general covering code upper bounds can be applied to the case that the volumes of the balls depend on the centers, not only on the radius. Then any good upper bound on the covering radius or the size of covering code imply a good upper bound on the sizes of list-decodable codes. Our results give exponential improvements on the recent generalized Singleton upper bound in STOC 2020 for Hamming metric list-decodable codes, when the code lengths are large. A generalized Singleton upper bound for average-radius list-decodable codes is also given from our general covering code upper bound. Even for the list size $L=1$ case our covering code upper bounds give highly non-trivial upper bounds on the sizes of codes with the given minimum distance. We also suggest to study the combinatorial covering list-decodable codes as a natural generalization of combinatorial list-decodable codes. We apply our general covering code upper bounds for list-decodable rank-metric codes, list-decodable subspace codes, list-decodable insertion codes and list-decodable deletion codes. Some new better results about non-list-decodability of rank-metric codes and subspace codes are obtained.


翻译:在理论计算机科学中, 列表标记代码是一个活跃的话题 。 包含代码上限界限的一般定义可以适用于球量取决于中心, 不仅在半径上。 然后, 在覆盖半径或列表解码能力标度大小上的任何良好约束都意味着在列表标记代码的大小上有一个良好的上限。 在覆盖代码的经典主题上, 我们的结果表明, 速度、 列表可辨别半径和列表大小上下限与覆盖代码的经典主题密切相关 。 我们的结果表明, 在代码长度大的情况下, 在普通限制的内限内, 列表可辨别代码的上限是新的。 普通可辨别列表可辨识代码的上限也是我们通用代码的上限值。 即便在包含覆盖列表半径半径半径或覆盖代码大小的任何好的上限内限内限内限内限内, 我们的内限内限内限内限内代码的上限内限内限内, 我们的上限内限内限内限内限内限内限内限内, 我们的内限内限内限内总代码的内限内限内限内, 。 我们的内限内限内限内限内限内限内限内限内限内限内限内,, 的普通单的普通单级的普通单级的内限内限内限内限内限内限内,,, 的内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内限内等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等的内限内限内限内限内限内限内限内限内定的内定的内定的内定内定的内等的内等内的内的内定的内定的内定的内定的内定的内限内限内限内限内限内限内限内限内限内限内限内

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
62+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员