A toric code, introduced by Hansen to extend the Reed-Solomon code as a $k$-dimensional subspace of $\mathbb{F}_q^n$, is determined by a toric variety or its associated integral convex polytope $P \subseteq [0,q-2]^n$, where $k=|P \cap \mathbb{Z}^n|$ (the number of integer lattice points of $P$). There are two relevant parameters that determine the quality of a code: the information rate, which measures how much information is contained in a single bit of each codeword; and the relative minimum distance, which measures how many errors can be corrected relative to how many bits each codeword has. Soprunov and Soprunova defined a good infinite family of codes to be a sequence of codes of unbounded polytope dimension such that neither the corresponding information rates nor relative minimum distances go to 0 in the limit. We examine different ways of constructing families of codes by considering polytope operations such as the join and direct sum. In doing so, we give conditions under which no good family can exist and strong evidence that there is no such good family of codes.
翻译:汉森为扩展Reed- Solomon 代码而引入的Arric 代码, 以将 Reed- Solomon 代码作为美元- 维基空间的 $mathbb{F ⁇ q ⁇ n$, 由一种tric 品种或其相联的 convex polytope $P\ subseteq [0, q-2, 2 ⁇ n$, 其中$kçP\ cap \ cap \ mathb ⁇ n ⁇ $P$] 来扩展 Reed- Solomon 代码。 有两个相关参数决定代码的质量 : 信息率, 用来衡量每个代码中的一小部分包含多少信息; 相对最小的距离, 用来衡量相对于每个代码中有多少比特可以纠正多少错误。 Soprunov 和 Soprunova 定义了一套相当的代码, 是一个无限制的多的代码序列, 以至于相应的信息率和相对最小的距离都没有到 0。 我们通过考虑多调的操作(例如组合和直接和组合) 来研究建立代码的不同方式。 我们给出了没有好的代码。 在这样的情况下, 没有良好的家庭是没有好的代码。