In this paper, we introduce a new class of codes, called weighted parity-check codes, where each parity-check bit has a weight that indicates its likelihood to be one (instead of fixing each parity-check bit to be zero). It is applicable to a wide range of settings, e.g. asymmetric channels, channels with state and/or cost constraints, and the Wyner-Ziv problem, and can provably achieve the capacity. For the channel with state (Gelfand-Pinsker) setting, the proposed coding scheme has two advantages compared to the nested linear code. First, it achieves the capacity of any channel with state (e.g. asymmetric channels). Second, simulation results show that the proposed code achieves a smaller error rate compared to the nested linear code.


翻译:在本文中,我们引入了一种新的代码类别,称为加权对等检查代码,每个对等检查位的权重都表明它有可能是一个代码(而不是将每对等检查位的比重固定为零 ) 。 它适用于多种环境,例如不对称的频道、州和/或成本制约的频道以及Wyner-Ziv问题,并且可以肯定地实现能力。对于州(Gelfand-Pinsker)设置的频道来说,拟议的编码计划与嵌入线性代码相比有两个优势。 首先,它实现了州(如不对称频道)任何频道的能力。 其次,模拟结果表明,拟议代码的误差率低于嵌入线性代码。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员