Chance constraints provide a principled framework to mitigate the risk of high-impact extreme events by modifying the controllable properties of a system. The low probability and rare occurrence of such events, however, impose severe sampling and computational requirements on classical solution methods that render them impractical. This work proposes a novel sampling-free method for solving rare chance constrained optimization problems affected by uncertainties that follow general Gaussian mixture distributions. By integrating modern developments in large deviation theory with tools from convex analysis and bilevel optimization, we propose tractable formulations that can be solved by off-the-shelf solvers. Our formulations enjoy several advantages compared to classical methods: their size and complexity is independent of event rarity, they do not require linearity or convexity assumptions on system constraints, and under easily verifiable conditions, serve as safe conservative approximations or asymptotically exact reformulations of the true problem. Computational experiments on linear, nonlinear and PDE-constrained problems from applications in portfolio management, structural engineering and fluid dynamics illustrate the broad applicability of our method and its advantages over classical sampling-based approaches in terms of both accuracy and efficiency.


翻译:机会限制提供了一个原则性框架,通过改变系统可控特性,减轻高影响极端事件的风险。但是,这类事件的概率低和很少发生,对传统解决办法提出了严格的抽样和计算要求,使这些办法不切实际。这项工作提出了一种新型的无抽样方法,以解决受一般高斯混合分布的不确定性影响的难得的机会有限优化问题。通过将大规模偏差理论中的现代发展与来自曲线分析和双级优化的工具结合起来,我们提出了可以通过现成的溶剂来解决的可移植配方。与古典方法相比,我们的配方具有若干优势:它们的规模和复杂性与事件罕见无关,它们并不要求系统限制方面的线性或共性假设,在容易核查的条件下,它们作为安全保守的近似或不难于精确地重塑真实问题。在组合管理、结构工程和流体动态中应用的线性、非线性和受PDE限制的问题的比较性实验说明了我们的方法的广泛适用性及其在准确和效率方面优于以典型抽样为基础的办法的优点。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月6日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员