In the context of a binary classification problem, the optimal linear combination of continuous predictors can be estimated by maximizing an empirical estimate of the area under the receiver operating characteristic (ROC) curve (AUC). For multi-category responses, the optimal predictor combination can similarly be obtained by maximization of the empirical hypervolume under the manifold (HUM). This problem is particularly relevant to medical research, where it may be of interest to diagnose a disease with various subtypes or predict a multi-category outcome. Since the empirical HUM is discontinuous, non-differentiable, and possibly multi-modal, solving this maximization problem requires a global optimization technique. Estimation of the optimal coefficient vector using existing global optimization techniques is computationally expensive, becoming prohibitive as the number of predictors and the number of outcome categories increases. We propose an efficient derivative-free black-box optimization technique based on pattern search to solve this problem. Through extensive simulation studies, we demonstrate that the proposed method achieves better performance compared to existing methods including the step-down algorithm. Finally, we illustrate the proposed method to predict swallowing difficulty after radiation therapy for oropharyngeal cancer based on radiation dose to various structures in the head and neck.
翻译:在二元分类问题的背景下,通过最大限度地对接收器操作特征(OC)曲线(AUC)曲线(AUC)下区域进行实证估计,可以估计连续预测者的最佳线性组合。对于多类响应,通过最大限度地利用多元(HUM)下的经验超量,也可以同样地获得最佳预测者组合。这个问题特别与医学研究有关,医学研究可能有兴趣用各种子类型诊断疾病或预测多类结果。由于经验性HUM是不连续的、不可区分的,而且可能是多模式的,因此解决这一最大化问题需要全球优化技术。利用现有全球优化技术对最佳系数矢量的估算在计算上费用高昂,随着预测器的数量和结果类别数量的增加而变得令人望而望而望而望而却步。我们建议一种高效的无衍生物黑盒优化技术,以模式搜索为基础,解决这一问题。通过广泛的模拟研究,我们证明拟议的方法比现行方法(包括逐步下降算法)取得更好的性。最后,我们要说明在以辐射疗法和以各种辐射剂量为基础的头部癌症和头部癌症结构中预测消化困难的拟议方法。