We consider the problem of global optimization with noisy zeroth order oracles - a well-motivated problem useful for various applications ranging from hyper-parameter tuning for deep learning to new material design. Existing work relies on Gaussian processes or other non-parametric family, which suffers from the curse of dimensionality. In this paper, we propose a new algorithm GO-UCB that leverages a parametric family of functions (e.g., neural networks) instead. Under a realizable assumption and a few other mild geometric conditions, we show that GO-UCB achieves a cumulative regret of $\tilde{O}(\sqrt{T})$ where $T$ is the time horizon. At the core of GO-UCB is a carefully designed uncertainty set over parameters based on gradients that allows optimistic exploration. Numerical simulation illustrates that GO-UCB works better than classical Bayesian optimization approaches in high dimensional cases, even if the model is misspecified.
翻译:我们考虑的是全球优化问题,它具有响亮的零顺序或触角,这是一个对从超参数调整用于深层次学习到新材料设计等各种应用都有用的问题。 现有工作依赖于高山进程或其他非参数家庭,它们受到维度的诅咒。 在本文中,我们提出一个新的算法GO-UCB, 利用功能的参数组合(例如神经网络)来代替。 在可实现的假设和其他一些温和的几何条件下,我们显示GO-UCB在美元为时空线的情况下,取得了美元(sqrt{T})的累积遗憾。 在GO-UCB的核心是一套精心设计的基于梯度参数的不确定性,这些梯度可以进行乐观的探索。 数字模拟表明GO-UCB在高维情况下比古典的Bayesian优化方法效果更好, 即使模型被错误描述。