This paper introduces a novel nonlocal partial difference equation (G-PDE) for labeling metric data on graphs. The G-PDE is derived as nonlocal reparametrization of the assignment flow approach that was introduced in \textit{J.~Math.~Imaging \& Vision} 58(2), 2017. Due to this parameterization, solving the G-PDE numerically is shown to be equivalent to computing the Riemannian gradient flow with respect to a nonconvex potential. We devise an entropy-regularized difference-of-convex-functions (DC) decomposition of this potential and show that the basic geometric Euler scheme for integrating the assignment flow is equivalent to solving the G-PDE by an established DC programming scheme. Moreover, the viewpoint of geometric integration reveals a basic way to exploit higher-order information of the vector field that drives the assignment flow, in order to devise a novel accelerated DC programming scheme. A detailed convergence analysis of both numerical schemes is provided and illustrated by numerical experiments.
翻译:本文为图表上标识的计量数据引入了一个新的非局部部分差异方程式(G-PDE)。G-PDE是作为在2017年第58(2)号\ textit{J.~Math.~image ⁇ Vision} 58(2)中引入的派任流程法的非局部重新校正。由于这一参数化,G-PDE的数字解析被显示相当于计算里曼尼梯度流与非康韦克斯潜力的不当地部分差异方程式(G-PDE )。我们设计了一种对调和功能(DC)进行分解的可能性,并表明整合派任流程的基本几何电极仪计划相当于通过既定的DC编程计划解决G-PDE。此外,几何整合的观点揭示了利用驱动派流的矢量场的更高排序信息的基本方法,以便设计一种新型的加速DC编程计划。我们提供了对两种数字组合的详细的趋同分析,并以数字实验加以说明。