Model discrepancy, defined as the difference between model predictions and reality, is ubiquitous in computational models for physical systems. It is common to derive partial differential equations (PDEs) from first principles physics, but make simplifying assumptions to produce tractable expressions for the governing equations or closure models. These PDEs are then used for analysis and design to achieve desirable performance. For instance, the end goal may be to solve a PDE-constrained optimization (PDECO) problem. This article considers the sensitivity of PDECO problems with respect to model discrepancy. We introduce a general representation of the discrepancy and apply post-optimality sensitivity analysis to derive an expression for the sensitivity of the optimal solution with respect to the discrepancy. An efficient algorithm is presented which combines the PDE discretization, post-optimality sensitivity operator, adjoint-based derivatives, and a randomized generalized singular value decomposition to enable scalable computation. Kronecker product structure in the underlying linear algebra and corresponding infrastructure in PDECO is exploited to yield a general purpose algorithm which is computationally efficient and portable across a range of applications. Known physics and problem specific characteristics of discrepancy are imposed through user specified weighting matrices. We demonstrate our proposed framework on two nonlinear PDECO problems to highlight its computational efficiency and rich insight.
翻译:模型差异的定义是模型预测和现实之间的差别,在物理系统的计算模型中,模型差异是普遍存在的。从第一原则物理中得出部分差异方程(PDEs)是常见的,但简化假设以产生可移动的表达式,用于治理方程或结束模型。然后,这些PDE用于分析和设计,以实现理想的性能。例如,最终目标可能是解决PDE受限制的优化(PDECO)问题。本条款考虑了PDDECO问题在模型差异方面的敏感性。我们采用差异的一般表示法,并应用最佳后灵敏度分析法,以得出最佳解决方案对差异的敏感性的表达法。介绍了一种高效的算法,将PDE的离散性、后优化灵敏度操作器、基于联合的衍生工具以及随机通用的超值分解定位结合起来,以便进行可缩放的计算。在PDECO的线性变数和相应的基础设施中,利用Kronecker产品结构产生一种通用的算法,该算出高效和可移植到一系列应用中的最佳解决办法的敏感度。介绍了PIPECO的深度精确度框架。我们通过两个应用的深度的物理和具体特征的计算问题。