The Spatio-Temporal Traffic Prediction (STTP) problem is a classical problem with plenty of prior research efforts that benefit from traditional statistical learning and recent deep learning approaches. While STTP can refer to many real-world problems, most existing studies focus on quite specific applications, such as the prediction of taxi demand, ridesharing order, traffic speed, and so on. This hinders the STTP research as the approaches designed for different applications are hardly comparable, and thus how an application-driven approach can be generalized to other scenarios is unclear. To fill in this gap, this paper makes three efforts: (i) we propose an analytic framework, called STAnalytic, to qualitatively investigate STTP approaches regarding their design considerations on various spatial and temporal factors, aiming to make different application-driven approaches comparable; (ii) we design a spatio-temporal meta-model, called STMeta, which can flexibly integrate generalizable temporal and spatial knowledge identified by STAnalytic, (iii) we build an STTP benchmark platform including ten real-life datasets with five scenarios to quantitatively measure the generalizability of STTP approaches. In particular, we implement STMeta with different deep learning techniques, and STMeta demonstrates better generalizability than state-of-the-art approaches by achieving lower prediction error on average across all the datasets.
翻译:斯帕蒂奥-时空交通预测(STTP)问题是一个古老的问题,许多先前的研究工作都得益于传统的统计学习和最近的深层学习方法。尽管STTP可以提及许多现实世界的问题,但大多数现有研究都侧重于相当具体的应用,如出租车需求的预测、搭车秩序、交通速度等。这阻碍了STTP的研究,因为为不同应用设计的方法几乎无法比较,因此,如何将应用驱动的方法推广到其他假设中来尚不清楚。为了填补这一空白,本文件作出了三项努力:(一) 我们提出了一个分析性框架,称为STAlytic,从质量上调查STTP方法关于各种空间和时间因素的设计考虑,目的是使不同的应用驱动方法具有可比性;(二) 我们设计了一个时空模型,称为STMeta,它可以灵活地将STAlytic公司确定的一般时间和空间知识综合起来,(三)我们建立了一个STTP基准平台,包括10个真实生命数据集,其中五个假设可以量化地测量STTP系统一般和一般预测方法的可变性。