Heterogeneous treatment effect models allow us to compare treatments at subgroup and individual levels, and are of increasing popularity in applications like personalized medicine, advertising, and education. In this talk, we first survey different causal estimands used in practice, which focus on estimating the difference in conditional means. We then propose DINA, the difference in natural parameters, to quantify heterogeneous treatment effect in exponential families and the Cox model. For binary outcomes and survival times, DINA is both convenient and more practical for modeling the influence of covariates on the treatment effect. Second, we introduce a meta-algorithm for DINA, which allows practitioners to use powerful off-the-shelf machine learning tools for the estimation of nuisance functions, and which is also statistically robust to errors in inaccurate nuisance function estimation. We demonstrate the efficacy of our method combined with various machine learning base-learners on simulated and real datasets.
翻译:不同治疗效果模型使我们能够比较分组和个体层面的治疗,并且在个性化医学、广告和教育等应用中越来越受欢迎。在这个演讲中,我们首先调查实际使用的不同因果估计,重点是估计有条件手段的差异。然后我们提议DINA,自然参数的差异,以量化指数家庭和Cox模型的不同治疗效果。对于二进制结果和生存时间,DINA既方便又更加实用,可以模拟共变因素对治疗效果的影响。第二,我们为DINA引入了元数值,使开业者能够使用强大的现成机器学习工具来估计破坏功能,在统计上对不准确的破坏功能估计中的错误也非常有力。我们展示了我们的方法与模拟和真实数据集的各种机器学习基本读物的功效。