Real low-resolution (LR) face images contain degradations which are too varied and complex to be captured by known downsampling kernels and signal-independent noises. So, in order to successfully super-resolve real faces, a method needs to be robust to a wide range of noise, blur, compression artifacts etc. Some of the recent works attempt to model these degradations from a dataset of real images using a Generative Adversarial Network (GAN). They generate synthetically degraded LR images and use them with corresponding real high-resolution(HR) image to train a super-resolution (SR) network using a combination of a pixel-wise loss and an adversarial loss. In this paper, we propose a two module super-resolution network where the feature extractor module extracts robust features from the LR image, and the SR module generates an HR estimate using only these robust features. We train a degradation GAN to convert bicubically downsampled clean images to real degraded images, and interpolate between the obtained degraded LR image and its clean LR counterpart. This interpolated LR image is then used along with it's corresponding HR counterpart to train the super-resolution network from end to end. Entropy Regularized Wasserstein Divergence is used to force the encoded features learnt from the clean and degraded images to closely resemble those extracted from the interpolated image to ensure robustness.
翻译:真实的低分辨率( LR) 表面图像包含的降解过于多样和复杂,无法通过已知的下层取样内核和信号依赖的噪音来捕捉。 因此, 为了成功超级解析真实面容, 一种方法需要坚固到广泛的噪音、 模糊、 压缩的人工制品等。 最近的一些作品试图用一个生成反反转网络( GAN) 来模拟真实图像数据集中的这些降解。 它们生成合成退化的LR图像, 并用相应的真实高分辨率图像来训练超级解析网络, 使用比等值损失和对抗性损失的组合。 因此, 我们在此文件中提出一个两个模块超级解析网络, 功能提取模块从 LR 图像中提取强的特征, 而 SR 模块仅使用这些强效的特征来生成一个HR估计 。 我们训练一个降解的 GAN, 将双曲线下印的干净图像转换成真实的退化图像, 并在获得的退化的LRR图像和干净的图像对应方图像之间进行国际化 。 这个内部解析的图像从一个模块到固定的 RDLR 图像, 与这些对流的对流的图像与对流的对流的图像与对流的对流的对流的图像使用, 。