Most state of the art decision systems based on Reinforcement Learning (RL) are data-driven black-box neuralmodels, where it is often difficult to incorporate expert knowledge into the models or let experts review andvalidate the learned decision mechanisms. Knowledge-insertion and model review are important requirements inmany applications involving human health and safety. One way to bridge the gap between data and knowledgedriven systems is program synthesis: replacing a neural network that outputs decisions with one that generatesdecision-making code in some programming language. We propose a new programming language, BF++,designed specifically for neural program synthesis in a Partially Observable Markov Decision Process (POMDP)setting and generate programs for a number of standard OpenAI Gym benchmarks.


翻译:以强化学习(RL)为基础的大多数先进决策系统是数据驱动黑盒神经模型,往往难以将专家知识纳入模型,或让专家审查和验证所学的决策机制。知识插入和模型审查是涉及人类健康和安全的许多应用的重要要求。缩小数据和知识驱动系统之间差距的一个办法是方案综合:用产生某些编程语言决策守则的神经网络取代输出决定的神经网络。我们提议了一种新的编程语言BF++,专门为神经方案合成设计,用于部分可观测的Markov决策程序(POMDP)的制定,并为若干标准OpenAI Gym基准制定方案。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员