We show how to insert an object from one image to another and get realistic results in the hard case, where the shading of the inserted object clashes with the shading of the scene. Rendering objects using an illumination model of the scene doesn't work, because doing so requires a geometric and material model of the object, which is hard to recover from a single image. In this paper, we introduce a method that corrects shading inconsistencies of the inserted object without requiring a geometric and physical model or an environment map. Our method uses a deep image prior (DIP), trained to produce reshaded renderings of inserted objects via consistent image decomposition inferential losses. The resulting image from DIP aims to have (a) an albedo similar to the cut-and-paste albedo, (b) a similar shading field to that of the target scene, and (c) a shading that is consistent with the cut-and-paste surface normals. The result is a simple procedure that produces convincing shading of the inserted object. We show the efficacy of our method both qualitatively and quantitatively for several objects with complex surface properties and also on a dataset of spherical lampshades for quantitative evaluation. Our method significantly outperforms an Image Harmonization (IH) baseline for all these objects. They also outperform the cut-and-paste and IH baselines in a user study with over 100 users.
翻译:我们展示如何从一个图像插入一个对象到另一个图像, 并在硬体案例中取得现实的结果。 在硬体案例中, 插入对象的阴影会与场景的阴影发生冲突。 使用场景的光化模型的显示对象不起作用, 因为这样做需要对象的几何和物质模型, 很难从一个图像中恢复。 在本文中, 我们引入了一种方法, 可以在不要求物理和物理模型或环境地图的情况下纠正插入对象的阴影不一致。 我们的方法在硬体案例中使用一个深层图像( IP), 并经过培训, 通过一致的图像分解结果产生插入对象的重新阴影显示。 DIP 产生的图像的目的是 (a) 类似于切除和粘贴的反光模型, (b) 类似于目标场的阴影字段, 以及 (c) 一种与剪切和粘贴的表面正常的阴影。 结果是一个简单的程序, 能够通过一致的图像分解的图像对象的重新阴影。 我们用一种精确的方法和定量的方法, 也用一种质量和定量的方法, 和标准性的方法, 和标准性地平面上, 。