In this work, we address conditional generation using deep invertible neural networks. This is a type of problem where one aims to infer the most probable inputs $X$ given outcomes $Y$. We call our method \textit{invertible graph neural network} (iGNN) due to the primary focus on generating node features on graph data. A notable feature of our proposed methods is that during network training, we revise the typically-used loss objective in normalizing flow and consider Wasserstein-2 regularization to facilitate the training process. Algorithmic-wise, we adopt an end-to-end training approach since our objective is to address prediction and generation in the forward and backward processes at once through a single model. Theoretically, we characterize the conditions for identifiability of a true mapping, the existence and invertibility of the mapping, and the expressiveness of iGNN in learning the mapping. Experimentally, we verify the performance of iGNN on both simulated and real-data datasets. We demonstrate through extensive numerical experiments that iGNN shows clear improvement over competing conditional generation benchmarks on high-dimensional and/or non-convex data.


翻译:在这项工作中,我们利用深不可视的神经网络来解决有条件的生成问题。这是一个问题,我们的目标是推断最有可能的投入美元,而给付的结果是美元。我们称我们的方法为“textit{不可逆的图形神经网络”(iGNN),因为主要重点是在图形数据中生成节点特征。我们建议的方法的一个显著特点是,在网络培训期间,我们修改通常使用的损失目标,使流动正常化,并考虑将Wasserstein-2正规化,以促进培训进程。在算法方面,我们采用端到端的培训方法,因为我们的目标是通过单一模型同时处理前向和后向过程的预测和生成。理论上,我们确定真实绘图的可识别性条件、绘图的存在和不可忽略性,以及iGNN在学习绘图方面的清晰度。实验中,我们核查iGNN在模拟和真实数据集方面的性能。我们通过广泛的数字实验表明,iGNN显示,在高维和/或非同步数据的相竞的有条件生成基准方面,iGNNN显示有明显的改进。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
27+阅读 · 2020年6月19日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员