Compressing the output of \epsilon-locally differentially private (LDP) randomizers naively leads to suboptimal utility. In this work, we demonstrate the benefits of using schemes that jointly compress and privatize the data using shared randomness. In particular, we investigate a family of schemes based on Minimal Random Coding (Havasi et al., 2019) and prove that they offer optimal privacy-accuracy-communication tradeoffs. Our theoretical and empirical findings show that our approach can compress PrivUnit (Bhowmick et al., 2018) and Subset Selection (Ye et al., 2018), the best known LDP algorithms for mean and frequency estimation, to to the order of \epsilon-bits of communication while preserving their privacy and accuracy guarantees.


翻译:在这项工作中,我们展示了利用共享随机性联合压缩和将数据私有化的计划的好处。特别是,我们调查了一套基于最小随机编码的计划(Havasi等人,2019年),并证明它们提供了最佳的隐私-准确性-通信取舍。我们的理论和经验调查结果表明,我们的方法可以将Priv United(Bhomick等人,2018年)和Subset selective(Ye等人,2018年),即最知名的中、频估算LDP算法,压缩成平均和频率估算法,以达到通信中位数的顺序,同时保持其隐私和准确性保障。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
9+阅读 · 2021年4月8日
Privacy-Preserving News Recommendation Model Learning
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员