项目名称: 贵金属负载纳米催化材料的调控合成与性能研究

项目编号: No.21271019

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 刘军枫

作者单位: 北京化工大学

项目金额: 80万元

中文摘要: 贵金属负载催化剂是许多石油化工过程的关键催化剂,受到材料、催化工作者的广泛关注。申请人拟针对有实用价值的工业催化反应,如烯烃环氧化反应,围绕以单分散纳米晶为基础的负载催化剂设计制备及催化性能开展研究工作。通过具有不同优势晶面单分散纳米粒子的可控合成、微观结构表征及对其探针催化反应研究,结合理论计算,探索材料晶面对其催化性能的影响,力图从微观上进一步理解催化剂"晶面效应"的本质,确定材料的高活性晶面和优势结构。在此基础上,采用可控自组装过程实现活性组分在载体纳米晶上的负载。并通过反应过程的优化,实现催化剂孔径、表面电性的调控。力图从介观和微观双尺度层面剖析影响催化活性的因素,探讨催化活性与材料结构之间的关系,为最终实现高效、稳定的纳米催化剂的工业化应用奠定基础。

中文关键词: 贵金属;负载催化剂;组装;纳米阵列;金属有机框架

英文摘要: Supported noble metal catalyst is the key in the field of heterogeneous catalysis and chemical reaction engineering. This application focuses on the synthesis of novel supported catalyst through the assembly of well defined (including morphology, size and crystal surface) monodisperse nanocrystals of active component and supported component precursor, and their applications in catalysis aiming at the catalytic reactions with important industrial background, such as ethylene epoxidation. With optimization of the synthesis process, monodisperse nanocrystals with controlled size and preferential crystal surfaces will be fabricated. The relationship between catalytic activities and microstructures (size/crystal surface) of catalyst will be investigated in order to deeply understand the "crystal plane effect" of the catalyst combining the micro-structural characterization, probe catalytic reaction and theoretical calculation. High active structure will also be determined. The loading of noble metals on the support materials will be achieved through a bottom-up self assembly process. The pore size and surface electrical properties in the final mesoporous catalyst could be adjusted by optimization of the assembly process. All these will lead to directional design and synthesis of novel highly active catalysts, which pr

英文关键词: noble metal;supported catalyst;assembly;nanoarray;MOF

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关主题
相关资讯
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员