Instrumental variable methods are among the most commonly used causal inference approaches to account for unmeasured confounders in observational studies. The presence of invalid instruments is the primary concern for practical applications, and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. The existing inference methods rely on correctly separating valid and invalid instruments in a data-dependent way. This paper illustrates that the existing confidence intervals may undercover due to the post-selection problem. To address this, we construct uniformly valid confidence intervals for the causal effect, robust to the mistakes in separating valid and invalid instruments. We propose to search for a range of effect values that lead to sufficiently many valid instruments. We further devise a novel sampling method, which, together with searching, leads to a more precise confidence interval. Our proposed searching and sampling confidence intervals are uniformly valid and achieve the parametric length under the finite-sample majority and plurality rules. We examine the effect of education on earnings using search and sampling confidence intervals. The proposed method is implemented in the R package \texttt{RobustIV} available from CRAN.
翻译:仪器变量方法是最常用的因果推断方法,用于核算观察研究中未计量的混乱者。无效仪器的存在是实际应用的主要关切,而快速增长的研究领域是因果关系的推断,可能无效的仪器可能无效。现有的推断方法依靠以数据为依存的方式正确区分有效和无效的仪器。本文表明,由于选举后问题,现有信任期可能隐藏在地下。为了解决这一问题,我们为因果效应制定了统一有效的信任期,在分离有效与无效仪器的错误面前保持稳健。我们提议寻找导致足够多有效仪器的一系列效果值。我们进一步设计新的抽样方法,与搜索一起,导致更精确的信任期。我们提议的搜索和抽样信任期是统一的,在限定抽样多数和多元规则下达到参数长度。我们用搜索和抽样信任期来研究教育对收入的影响。拟议方法在CRAN提供的R包\textt{RobustIV}中实施。