Any generic deep machine learning algorithm is essentially a function fitting exercise, where the network tunes its weights and parameters to learn discriminatory features by minimizing some cost function. Though the network tries to learn the optimal feature space, it seldom tries to learn an optimal distance metric in the cost function, and hence misses out on an additional layer of abstraction. We present a simple effective way of achieving this by learning a generic Mahalanabis distance in a collaborative loss function in an end-to-end fashion with any standard convolutional network as the feature learner. The proposed method DML-CRC gives state-of-the-art performance on benchmark fine-grained classification datasets CUB Birds, Oxford Flowers and Oxford-IIIT Pets using the VGG-19 deep network. The method is network agnostic and can be used for any similar classification tasks.
翻译:任何通用的深层机器学习算法基本上都是一项功能适合的工作,网络通过尽量减少某些成本功能来调整其重量和参数以学习歧视性特征。虽然网络试图学习最佳功能空间,但很少尝试在成本功能中学习最佳距离测量,从而忽略了额外的抽象层面。我们通过学习通用的Mahalanabis在作为特征学习者的任何标准共产网络中以端至端的方式在协作损失函数中学习一个简单有效的方法来实现这一目标。提议的DML-CRC方法在使用VGG-19深度网络的基准精细分类数据集CUB Birds、Oxford Flowers 和 Oxford-IIIT Pets 上提供了最先进的性能。该方法是一种网络不可知性,可用于任何类似的分类任务。