Correlation clustering is a ubiquitous paradigm in unsupervised machine learning where addressing unfairness is a major challenge. Motivated by this, we study Fair Correlation Clustering where the data points may belong to different protected groups and the goal is to ensure fair representation of all groups across clusters. Our paper significantly generalizes and improves on the quality guarantees of previous work of Ahmadi et al. and Ahmadian et al. as follows. - We allow the user to specify an arbitrary upper bound on the representation of each group in a cluster. - Our algorithm allows individuals to have multiple protected features and ensure fairness simultaneously across them all. - We prove guarantees for clustering quality and fairness in this general setting. Furthermore, this improves on the results for the special cases studied in previous work. Our experiments on real-world data demonstrate that our clustering quality compared to the optimal solution is much better than what our theoretical result suggests.


翻译:在未受监督的机器学习中,处理不公平现象是一个重大挑战,因此,关联集群是一种无处不在的范例。我们为此研究公平关联集群,因为数据点可能属于不同的受保护群体,目标是确保所有群体在组群中的公平代表性。我们的文件对艾哈迈迪等人和艾哈迈德等人以及艾哈迈迪等人以往工作的质量保障作了如下的大幅度概括和改进。我们允许用户对每个群体在组群中的代表性指定一个任意的上限。 - 我们的算法允许个人拥有多个受保护的特征,并确保它们之间的公平性。 - 我们证明在这个总体环境中,可以保证组合质量和公平性。 此外,这也改进了以往工作中所研究的特例的结果。 我们对现实世界数据的实验表明,与最佳解决方案相比,我们的组合质量比理论结果所显示的要好得多。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月22日
Local search for efficient causal effect estimation
Arxiv
0+阅读 · 2022年7月22日
Arxiv
0+阅读 · 2022年7月22日
Arxiv
31+阅读 · 2020年9月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
0+阅读 · 2022年7月22日
Local search for efficient causal effect estimation
Arxiv
0+阅读 · 2022年7月22日
Arxiv
0+阅读 · 2022年7月22日
Arxiv
31+阅读 · 2020年9月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员