We study the problem of fairness in k-centers clustering on data with disjoint demographic groups. Specifically, this work proposes a variant of fairness which restricts each group's number of centers with both a lower bound (minority-protection) and an upper bound (restricted-domination), and provides both an offline and one-pass streaming algorithm for the problem. In the special case where the lower bound and the upper bound is the same, our offline algorithm preserves the same time complexity and approximation factor with the previous state-of-the-art. Furthermore, our one-pass streaming algorithm improves on approximation factor, running time and space complexity in this special case compared to previous works. Specifically, the approximation factor of our algorithm is 13 compared to the previous 17-approximation algorithm, and the previous algorithms' time complexities have dependence on the metric space's aspect ratio, which can be arbitrarily large, whereas our algorithm's running time does not depend on the aspect ratio.
翻译:我们研究K中心群集数据与人口群脱节的数据的公平性问题。 具体地说, 这项工作提出了一种公平性变式, 限制每个群体拥有较低约束( 少数群体保护) 和上约束( 限制分配) 的中心数量, 并为问题提供一条离线和单行流算法。 在下约束和上约束相同的特殊情况下, 我们的离线算法与前一先进保持了相同的时间复杂性和近似系数。 此外, 我们的单行流算法提高了近似系数、运行时间和空间复杂性。 具体地说, 我们算法的近似系数是13, 与前17个协调算法相比, 以前的算法复杂程度依赖于测量空间的侧比, 后者可能是任意的很大, 而我们的算法运行时间并不取决于侧比。