The classic Yannakakis framework proposed in 1981 is still the state-of-the-art approach for tackling acyclic join-aggregate queries defined over commutative semi-rings. It has been shown that the time complexity of the Yannakakis framework is $O(N + \OUT)$ for any free-connex join-aggregate query, where $N$ is the input size of database and $\OUT$ is the output size of the query result. This is already output-optimal. However, only a general upper bound $O(N \cdot \OUT)$ on the time complexity of the Yannakakis framework is known for the remaining class of acyclic but non-free-connex queries. We first show a lower bound $\Omega\left(N \cdot \OUT^{1- \frac{1}{\outw}} + \OUT\right)$ for computing an acyclic join-aggregate query by {\em semi-ring algorithms}, where $\outw$ is identified as the {\em out-width} of the input query, $N$ is the input size of the database, and $\OUT$ is the output size of the query result. For example, $\outw =2$ for the chain matrix multiplication query, and $\outw=k$ for the star matrix multiplication query with $k$ relations. We give a tighter analysis of the Yannakakis framework and show that Yannakakis framework is already output-optimal on the class of {\em aggregate-hierarchical} queries. However, for the large remaining class of non-aggregate-hierarchical queries, such as chain matrix multiplication query, Yannakakis framework indeed requires $\Theta(N \cdot \OUT)$ time. We next explore a hybrid version of the Yannakakis framework and present an output-optimal algorithm for computing any general acyclic join-aggregate query within $\O\left(N\cdot \OUT^{1-\frac{1}{\outw}} + \OUT\right)$ time, matching the out-width-dependent lower bound up to a poly-logarithmic factor. To the best of our knowledge, this is the first polynomial improvement for computing acyclic join-aggregate queries since 1981.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
30+阅读 · 2019年3月13日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
30+阅读 · 2019年3月13日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
12+阅读 · 2018年1月28日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员