The diagonalization technique was invented by Cantor to show that there are more real numbers than algebraic numbers, and is very important in computer science. In this work, we enumerate all polynomial-time deterministic Turing machines and diagonalize over all of them by an universal nondeterministic Turing machine. As a result, we obtain that there is a language $L_d$ not accepted by any polynomial-time deterministic Turing machines but accepted by a nondeterministic Turing machine working within $O(n^k)$ for any $k\in\mathbb{N}_1$, i.e. $L_d\in \mathcal{NP}$ . That is, we present a proof that $\mathcal{P}$ and $\mathcal{NP}$ differ. Key words: Diagonalization, Polynomial-Time deterministic Turing machine, Universal nondeterministic Turing machine
翻译:Cantor 发明了二进制技术, 以显示实际数字多于代数, 在计算机科学中非常重要。 在这项工作中, 我们通过通用的非确定性图灵机器, 并用通用的非确定性图灵机器, 将所有多米时间的确定性图灵机器加到所有这些机器上。 因此, 我们得到一个语言为$L_ d$不被任何多米时确定性图灵机器所接受, 但却被在任何美元( näk) 范围内工作的非确定性图灵机器所接受。 关键词是: 直角化、 多边- 时间确定性图灵机器、 通用非确定性图灵机、 通用非确定性图灵机。 这就是说, 我们提出的证据是, $\mathcal{ P} $ 和 $\ mathcal{NP} 。