Variational approximation, such as mean-field (MF) and tree-reweighted (TRW), provide a computationally efficient approximation of the log-partition function for a generic graphical model. TRW provably provides an upper bound, but the approximation ratio is generally not quantified. As the primary contribution of this work, we provide an approach to quantify the approximation ratio through the property of the underlying graph structure. Specifically, we argue that (a variant of) TRW produces an estimate that is within factor $\frac{1}{\sqrt{\kappa(G)}}$ of the true log-partition function for any discrete pairwise graphical model over graph $G$, where $\kappa(G) \in (0,1]$ captures how far $G$ is from tree structure with $\kappa(G) = 1$ for trees and $2/N$ for the complete graph over $N$ vertices. As a consequence, the approximation ratio is $1$ for trees, $\sqrt{(d+1)/2}$ for any graph with maximum average degree $d$, and $\stackrel{\beta\to\infty}{\approx} 1+1/(2\beta)$ for graphs with girth (shortest cycle) at least $\beta \log N$. In general, $\kappa(G)$ is the solution of a max-min problem associated with $G$ that can be evaluated in polynomial time for any graph. Using samples from the uniform distribution over the spanning trees of G, we provide a near linear-time variant that achieves an approximation ratio equal to the inverse of square-root of minimal (across edges) effective resistance of the graph. We connect our results to the graph partition-based approximation method and thus provide a unified perspective. Keywords: variational inference, log-partition function, spanning tree polytope, minimum effective resistance, min-max spanning tree, local inference
翻译:偏差近似值, 如平均值( MF) 和树抗力( TRW), 为通用图形模型提供了对正对偏差分配函数的计算效率近似值。 TRW 可以提供上约束值, 但近差比率一般没有量化。 作为这项工作的主要贡献, 我们提供了一种方法, 通过底图结构属性量化近差比率。 具体地说, 我们辩称( 一个变量) TRW 产生的估计值在 $\ ferc{ 1unsqrt_ kapapa( G) 的系数内, 为任何离散双对齐平面图形模型的对正对正对比值 $G$( G) 提供计算值的对正比值, 直径( 美元) 直径( 美元) 直径( 美元) 直径( 直径) 直径( 直径) 直径( 直) 直径( 直径) 直径( 直- 直径) 平方( 直径) 直径( 美元) 直径( G) 直径) 直径= 直方( 直方( 美元) 直方( 美元) 直方( 美元) 直) 直方( 直) 直) 直( 直) 直方( 美元) 直) 直) 直) 直方( 直方( 直) 直 直方( 美元) 直方( 直方) 直方( 直方) 直方),,, 直方), 直方( 直方),,, 直) 直方( 直) 直) 方( 方( ) 方) 方( 方( ) ) 方( 美元) ), 美元) 方),, 直方,, 直方),,,,,, 直方 (, 美元) 方(, 美元) 美元) 直方), 以直方, 直方 (, 美元), 等方,,,