We study the model-based reward-free reinforcement learning with linear function approximation for episodic Markov decision processes (MDPs). In this setting, the agent works in two phases. In the exploration phase, the agent interacts with the environment and collects samples without the reward. In the planning phase, the agent is given a specific reward function and uses samples collected from the exploration phase to learn a good policy. We propose a new provably efficient algorithm, called UCRL-RFE under the Linear Mixture MDP assumption, where the transition probability kernel of the MDP can be parameterized by a linear function over certain feature mappings defined on the triplet of state, action, and next state. We show that to obtain an $\epsilon$-optimal policy for arbitrary reward function, UCRL-RFE needs to sample at most $\tilde O(H^5d^2\epsilon^{-2})$ episodes during the exploration phase. Here, $H$ is the length of the episode, $d$ is the dimension of the feature mapping. We also propose a variant of UCRL-RFE using Bernstein-type bonus and show that it needs to sample at most $\tilde O(H^4d(H + d)\epsilon^{-2})$ to achieve an $\epsilon$-optimal policy. By constructing a special class of linear Mixture MDPs, we also prove that for any reward-free algorithm, it needs to sample at least $\tilde \Omega(H^2d\epsilon^{-2})$ episodes to obtain an $\epsilon$-optimal policy. Our upper bound matches the lower bound in terms of the dependence on $\epsilon$ and the dependence on $d$ if $H \ge d$.


翻译:我们研究基于模型的无奖赏强化学习,其直线函数近似于Sindic Markov 决策程序(MDPs) 。 在这种环境下,代理器分两个阶段工作。 在勘探阶段,代理器与环境互动,收集样本而没有奖赏。 在规划阶段,代理器被赋予特定奖赏功能,并使用从勘探阶段收集的样本来学习良好的政策。 我们在线性混合 mixture 假设下, 名为 UCRL-RFE 的新型高效算法, 称为UCRL- RFE, 其中MDP的过渡概率内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 等内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 等内核内核内核内核内核内核内核内核内核内核内核内 等内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内

0
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
4+阅读 · 2020年3月19日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月5日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员