In this paper, we study an additive model where the response variable is Hilbert-space-valued and predictors are multivariate Euclidean, and both are possibly imperfectly observed. Considering Hilbert-space-valued responses allows to cover Euclidean, compositional, functional and density-valued variables. By treating imperfect responses, we can cover functional variables taking values in a Riemannian manifold and the case where only a random sample from a density-valued response is available. This treatment can also be applied in semiparametric regression. Dealing with imperfect predictors allows us to cover various principal component and singular component scores obtained from Hilbert-space-valued variables. For the estimation of the additive model having such variables, we use the smooth backfitting method. We provide full non-asymptotic and asymptotic properties of our regression estimator and present its wide applications via several simulation studies and real data applications.
翻译:在本文中, 我们研究一个添加模型, 反应变量是Hilbert- 空间价值和预测器是多变量的 Euclidean, 并且两者都可能是不完全的观察。 考虑到 Hilbert- 空间价值的响应可以覆盖 Euclidean 、 构成性、 功能性和密度值的变量。 通过处理不完善的响应, 我们可以覆盖功能变量, 以Riemannian 方块中的价值取而代之, 并且只有密度值响应的随机样本。 这种处理也可以应用于半参数回归。 处理不完善的预测器可以让我们覆盖从 Hilbert- 空间价值变量中获得的各种主要组成部分和单项元分数。 对于具有这些变量的添加模型的估计, 我们使用顺畅的回配方法。 我们提供了我们的回归测算器的完全非适应性和非适应性特性, 并通过若干模拟研究和真实的数据应用来展示其广泛的应用 。