We consider the problem of optimizing a portfolio of financial assets, where the number of assets can be much larger than the number of observations. The optimal portfolio weights require estimating the inverse covariance matrix of excess asset returns, classical solutions of which behave badly in high-dimensional scenarios. We propose to use a regression-based joint shrinkage method for estimating the partial correlation among the assets. Extensive simulation studies illustrate the superior performance of the proposed method with respect to variance, weight, and risk estimation errors compared with competing methods for both the global minimum variance portfolios and Markowitz mean-variance portfolios. We also demonstrate the excellent empirical performances of our method on daily and monthly returns of the components of the S&P 500 index.
翻译:我们考虑了优化金融资产组合的问题,在这种组合中,资产数量可能比观察数量大得多;最佳组合权重要求估计超额资产回报的逆差共变矩阵,这些超额资产回报的典型解决办法在高维情景中表现不良;我们提议采用基于回归的联合缩水法来估计资产之间的部分相关性;广泛的模拟研究表明,与全球最低差异组合和马尔科维茨中位变差组合的竞争性方法相比,拟议方法在差异、重量和风险估计误差方面的优劣表现;我们还展示了我们在S & P 500指数各组成部分的每日和每月回报方面的出色经验性表现。