Kernel matrices are crucial in many learning tasks such as support vector machines or kernel ridge regression. The kernel matrix is typically dense and large-scale. Depending on the dimension of the feature space even the computation of all of its entries in reasonable time becomes a challenging task. For such dense matrices the cost of a matrix-vector product scales quadratically in the number of entries, if no customized methods are applied. We propose the use of an ANOVA kernel, where we construct several kernels based on lower-dimensional feature spaces for which we provide fast algorithms realizing the matrix-vector products. We employ the non-equispaced fast Fourier transform (NFFT), which is of linear complexity for fixed accuracy. Based on a feature grouping approach, we then show how the fast matrix-vector products can be embedded into a learning method choosing kernel ridge regression and the preconditioned conjugate gradient solver. We illustrate the performance of our approach on several data sets.
翻译:内核矩阵在许多学习任务中至关重要, 如支持矢量机或内核脊回归。 内核矩阵通常密度大, 取决于特性空间的维度, 甚至合理时间计算所有条目都具有挑战性。 对于这种密集的矩阵而言,如果不采用定制方法, 则在条目数量中以二次尺度计算矩阵- 矢量产品的成本。 我们提议使用一个 ANOVA 内核, 在那里我们根据低维特征空间建造若干内核, 用于提供实现矩阵- 矢量产品的快速算法。 我们使用非等宽度快速四倍变换( NFFT), 因为它具有线性复杂性, 以固定准确性 。 根据特性组合方法, 我们然后展示快速矩阵- 矢量产品如何嵌入学习方法, 选择内核脊回归和先决条件的同质梯度解器。 我们用多个数据集来说明我们的方法的绩效 。